Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
J Huntingtons Dis ; 13(1): 33-40, 2024.
Article En | MEDLINE | ID: mdl-38393920

Somatic instability of the huntingtin (HTT) CAG repeat mutation modifies age-at-onset of Huntington's disease (HD). Understanding the mechanism and pathogenic consequences of instability may reveal therapeutic targets. Using small-pool PCR we analyzed CAG instability in the OVT73 sheep model which expresses a full-length human cDNA HTT transgene. Analyses of five- and ten-year old sheep revealed the transgene (CAG)69 repeat was remarkably stable in liver, striatum, and other brain tissues. As OVT73 sheep at ten years old have minimal cell death and behavioral changes, our findings support instability of the HTT expanded-CAG repeat as being required for the progression of HD.


Huntington Disease , Animals , Sheep/genetics , Humans , Child , Child, Preschool , Huntington Disease/metabolism , Corpus Striatum/metabolism , Neostriatum/metabolism , Mutation , Age of Onset , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Trinucleotide Repeat Expansion/genetics , Disease Models, Animal
2.
J Huntingtons Dis ; 12(3): 201-213, 2023.
Article En | MEDLINE | ID: mdl-37661892

BACKGROUND: Synaptic changes occur early in patients with Huntington's disease (HD) and in mouse models of HD. An analysis of synaptic changes in HD transgenic sheep (OVT73) is fitting since they have been shown to have some phenotypes. They also have larger brains, longer lifespan, and greater motor and cognitive capacities more aligned with humans, and can provide abundant biofluids for in vivo monitoring of therapeutic interventions. OBJECTIVE: The objective of this study was to determine if there were differences between 5- and 10-year-old OVT73 and wild-type (WT) sheep in levels of synaptic proteins in brain and in neurofilament light chain (NfL) in cerebrospinal fluid (CSF) and plasma. METHODS: Mutant huntingtin (mHTT) and other proteins were measured by western blot assay in synaptosomes prepared from caudate, motor, and piriform cortex in 5-year-old and caudate, putamen, motor; and piriform cortex in 10-year-old WT and OVT73 sheep. Levels of NfL, a biomarker for neuronal damage increased in many neurological disorders including HD, were examined in CSF and plasma samples from 10-year-old WT and OVT73 sheep using the Simoa NfL Advantage kit. RESULTS: Western blot analysis showed mHTT protein expression in synaptosomes from OVT73 sheep was  23% of endogenous sheep HTT levels at both ages. Significant changes were detected in brain levels of PDE10A, SCN4B, DARPP32, calmodulin, SNAP25, PSD95, VGLUT 1, VAMP1, and Na+/K+-ATPase, which depended on age and brain region. There was no difference in NfL levels in CSF and plasma in OVT73 sheep compared to age-matched WT sheep. CONCLUSIONS: These results show that synaptic changes occur in brain of 5- and 10-year-old OVT73 sheep, but levels of NfL in biofluids are unaffected. Altogether, the data support a prodromal disease state in OVT73 sheep that involves the caudate, putamen and cortex.

3.
J Huntingtons Dis ; 10(4): 423-434, 2021.
Article En | MEDLINE | ID: mdl-34420978

BACKGROUND: The pathological mechanism of cellular dysfunction and death in Huntington's disease (HD) is not well defined. Our transgenic HD sheep model (OVT73) was generated to investigate these mechanisms and for therapeutic testing. One particular cohort of animals has undergone focused investigation resulting in a large interrelated multi-omic dataset, with statistically significant changes observed comparing OVT73 and control 'omic' profiles and reported in literature. OBJECTIVE: Here we make this dataset publicly available for the advancement of HD pathogenic mechanism discovery. METHODS: To enable investigation in a user-friendly format, we integrated seven multi-omic datasets from a cohort of 5-year-old OVT73 (n = 6) and control (n = 6) sheep into a single database utilising the programming language R. It includes high-throughput transcriptomic, metabolomic and proteomic data from blood, brain, and other tissues. RESULTS: We present the 'multi-omic' HD sheep database as a queryable web-based platform that can be used by the wider HD research community (https://hdsheep.cer.auckland.ac.nz/). The database is supported with a suite of simple automated statistical analysis functions for rapid exploratory analyses. We present examples of its use that validates the integrity relative to results previously reported. The data may also be downloaded for user determined analysis. CONCLUSION: We propose the use of this online database as a hypothesis generator and method to confirm/refute findings made from patient samples and alternate model systems, to expand our understanding of HD pathogenesis. Importantly, additional tissue samples are available for further investigation of this cohort.


Huntington Disease , Animals , Brain , Humans , Huntington Disease/genetics , Proteomics , Sheep
4.
Metabolites ; 9(6)2019 Jun 11.
Article En | MEDLINE | ID: mdl-31212603

Huntington's disease (HD) is a neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the HTT gene. HD usually manifests in mid-life with loss of GABAergic projection neurons from the striatum accompanied by progressive atrophy of the putamen followed by other brain regions, but linkages between the genetics and neurodegeneration are not understood. We measured metabolic perturbations in HD-human brain in a case-control study, identifying pervasive lowering of vitamin B5, the obligatory precursor of coenzyme A (CoA) that is essential for normal intermediary metabolism. Cerebral pantothenate deficiency is a newly-identified metabolic defect in human HD that could potentially: (i) impair neuronal CoA biosynthesis; (ii) stimulate polyol-pathway activity; (iii) impair glycolysis and tricarboxylic acid cycle activity; and (iv) modify brain-urea metabolism. Pantothenate deficiency could lead to neurodegeneration/dementia in HD that might be preventable by treatment with vitamin B5.

5.
J Chem Neuroanat ; 97: 43-56, 2019 04.
Article En | MEDLINE | ID: mdl-30664938

The substantia nigra is an integral component of the basal ganglia circuitry for limbic and motor functions. Dysfunction and degeneration of the basal ganglia are fundamental aspects of neurodegenerative diseases such as Parkinson's disease and Huntington's disease. With the increasing use of sheep to model neurological diseases, it is crucial to understand the anatomy and neurochemistry of these key basal ganglia nuclei in the normal sheep brain and how they compare to the human brain. Therefore, studies of the gross anatomy, cellular morphology, and neurochemical expression patterns within the sheep substantia nigra were performed. We show that the sheep substantia nigra reflects all important aspects of the anatomy and neurochemistry of the human substantia nigra, with only minor inter-species differences evident. Many neurochemicals that are central to the functioning of the SN, and wider basal ganglia circuitry, are present throughout the sheep SN. In a wider context, the results of this study provide evidence that the sheep substantia nigra accurately reflects the anatomy of the human substantia nigra, which validates the use of sheep models of basal ganglia neurological disorders.


Sheep , Substantia Nigra/anatomy & histology , Substantia Nigra/metabolism , Animals
6.
Dis Model Mech ; 11(11)2018 11 09.
Article En | MEDLINE | ID: mdl-30266839

Brain dopamine-serotonin vesicular transport disease is a rare disease caused by autosomal recessive mutations in the SLC18A2 gene, which encodes the VMAT2 protein. VMAT2 is a membrane protein responsible for vesicular transport of monoamines, and its disruption negatively affects neurotransmission. This results in a severe neurodevelopmental disorder affecting motor skills and development, and causes muscular hypotonia. The condition was initially described in a consanguineous Saudi Arabian family with affected siblings homozygous for a P387L mutation. We subsequently found a second mutation in a New Zealand family (homozygous P237H), which was later also identified in an Iraqi family. Pramipexole has been shown to have some therapeutic benefit. Transgenic Caenorhabditis elegans were developed to model the P237H and P387L mutations. Investigations into dopamine- and serotonin-related C. elegans phenotypes, including pharyngeal pumping and grazing, showed that both mutations cause significant impairment of these processes when compared with a non-transgenic N2 strain and a transgenic containing the wild-type human SLC18A2 gene. Preliminary experiments investigating the therapeutic effects of serotonin and pramipexole demonstrated that serotonin could successfully restore the pharyngeal pumping phenotype. These analyses provide further support for the role of these mutations in this disease.


Brain/metabolism , Caenorhabditis elegans/metabolism , Dopamine/metabolism , Models, Biological , Serotonin/metabolism , Transport Vesicles/pathology , Animals , Animals, Genetically Modified , Base Sequence , Biological Transport , Humans , Pharynx/pathology , Phenotype , Transport Vesicles/metabolism
7.
Hum Gene Ther ; 29(6): 663-673, 2018 06.
Article En | MEDLINE | ID: mdl-29207890

Huntington's disease (HD) is a fatal neurodegenerative disease caused by a genetic expansion of the CAG repeat region in the huntingtin (HTT) gene. Studies in HD mouse models have shown that artificial miRNAs can reduce mutant HTT, but evidence for their effectiveness and safety in larger animals is lacking. HD transgenic sheep express the full-length human HTT with 73 CAG repeats. AAV9 was used to deliver unilaterally to HD sheep striatum an artificial miRNA targeting exon 48 of the human HTT mRNA under control of two alternative promoters: U6 or CßA. The treatment reduced human mutant (m) HTT mRNA and protein 50-80% in the striatum at 1 and 6 months post injection. Silencing was detectable in both the caudate and putamen. Levels of endogenous sheep HTT protein were not affected. There was no significant loss of neurons labeled by DARPP32 or NeuN at 6 months after treatment, and Iba1-positive microglia were detected at control levels. It is concluded that safe and effective silencing of human mHTT protein can be achieved and sustained in a large-animal brain by direct delivery of an AAV carrying an artificial miRNA.


Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , MicroRNAs/metabolism , Mutant Proteins/metabolism , Neostriatum/metabolism , Animals , Animals, Genetically Modified , Dependovirus/genetics , Disease Models, Animal , Electrolytes/metabolism , Genetic Vectors/metabolism , Genome, Viral , Humans , Immunoassay , Injections , Kidney/physiopathology , Liver/physiopathology , MicroRNAs/genetics , Microglia/metabolism , Neurons/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sheep
8.
Proc Natl Acad Sci U S A ; 114(52): E11293-E11302, 2017 12 26.
Article En | MEDLINE | ID: mdl-29229845

The neurodegenerative disorder Huntington's disease (HD) is typically characterized by extensive loss of striatal neurons and the midlife onset of debilitating and progressive chorea, dementia, and psychological disturbance. HD is caused by a CAG repeat expansion in the Huntingtin (HTT) gene, translating to an elongated glutamine tract in the huntingtin protein. The pathogenic mechanism resulting in cell dysfunction and death beyond the causative mutation is not well defined. To further delineate the early molecular events in HD, we performed RNA-sequencing (RNA-seq) on striatal tissue from a cohort of 5-y-old OVT73-line sheep expressing a human CAG-expansion HTT cDNA transgene. Our HD OVT73 sheep are a prodromal model and exhibit minimal pathology and no detectable neuronal loss. We identified significantly increased levels of the urea transporter SLC14A1 in the OVT73 striatum, along with other important osmotic regulators. Further investigation revealed elevated levels of the metabolite urea in the OVT73 striatum and cerebellum, consistent with our recently published observation of increased urea in postmortem human brain from HD cases. Extending that finding, we demonstrate that postmortem human brain urea levels are elevated in a larger cohort of HD cases, including those with low-level neuropathology (Vonsattel grade 0/1). This elevation indicates increased protein catabolism, possibly as an alternate energy source given the generalized metabolic defect in HD. Increased urea and ammonia levels due to dysregulation of the urea cycle are known to cause neurologic impairment. Taken together, our findings indicate that aberrant urea metabolism could be the primary biochemical disruption initiating neuropathogenesis in HD.


Corpus Striatum/metabolism , Huntington Disease/metabolism , Urea/metabolism , Adult , Animals , Animals, Genetically Modified , Corpus Striatum/pathology , Disease Models, Animal , Female , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/genetics , Huntington Disease/pathology , Male , Sheep , Trinucleotide Repeat Expansion/genetics
9.
Neurobiol Aging ; 58: 112-119, 2017 10.
Article En | MEDLINE | ID: mdl-28728117

This study reports the identification and characterization of markers of Alzheimer's disease (AD) in aged sheep (Ovis aries) as a preliminary step toward making a genetically modified large animal model of AD. Importantly, the sequences of key proteins involved in AD pathogenesis are highly conserved between sheep and human. The processing of the amyloid-ß (Aß) protein is conserved between sheep and human, and sheep Aß1-42/Aß1-40 ratios in cerebrospinal fluid (CSF) are also very similar to human. In addition, total tau and neurofilament light levels in CSF are comparable with those found in human. The presence of neurofibrillary tangles in aged sheep brain has previously been established; here, we report for the first time that plaques, the other pathologic hallmark of AD, are also present in the aged sheep brain. In summary, the biological machinery to generate the key neuropathologic features of AD is conserved between the human and sheep, making the sheep a good candidate for future genetic manipulation to accelerate the condition for use in pathophysiological discovery and therapeutic testing.


Alzheimer Disease , Amyloid beta-Peptides/cerebrospinal fluid , Animals, Genetically Modified , Disease Models, Animal , Neurofilament Proteins/cerebrospinal fluid , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluid , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Biomarkers/cerebrospinal fluid , Brain/metabolism , Brain/pathology , Humans , Neurofibrillary Tangles , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Sheep
10.
Sci Rep ; 7: 41120, 2017 01 25.
Article En | MEDLINE | ID: mdl-28120936

Integration of exogenous DNA into a host genome represents an important route to generate animal and cellular models for exploration into human disease and therapeutic development. In most models, little is known concerning structural integrity of the transgene, precise site of integration, or its impact on the host genome. We previously used whole-genome and targeted sequencing approaches to reconstruct transgene structure and integration sites in models of Huntington's disease, revealing complex structural rearrangements that can result from transgenesis. Here, we demonstrate in the R6/2 mouse, a widely used Huntington's disease model, that integration of a rearranged transgene with coincident deletion of 5,444 bp of host genome within the gene Gm12695 has striking molecular consequences. Gm12695, the function of which is unknown, is normally expressed at negligible levels in mouse brain, but transgene integration has resulted in cortical expression of a partial fragment (exons 8-11) 3' to the transgene integration site in R6/2. This transcript shows significant expression among the extensive network of differentially expressed genes associated with this model, including synaptic transmission, cell signalling and transcription. These data illustrate the value of sequence-level resolution of transgene insertions and transcription analysis to inform phenotypic characterization of transgenic models utilized in therapeutic research.


Disease Models, Animal , Huntington Disease/pathology , Mice, Transgenic , Animals , Gene Expression Profiling , Gene Rearrangement , Humans , Mice , Sequence Analysis, DNA , Sequence Deletion
11.
J Huntingtons Dis ; 5(3): 297-301, 2016 10 01.
Article En | MEDLINE | ID: mdl-27716680

Huntington's disease is caused by expansion of the CAG repeat in Huntingtin. This repeat has shown tissue-specific instability in mouse models and in a small number of post-mortem human samples. We used small-pool PCR to generate a modified instability index to quantify CAG instability within two brain regions from six human samples where cell loss has been associated with motor and mood symptoms: the motor cortex and cingulate gyrus. The expanded allele demonstrated instability in both regions, with minimal instability in the unexpanded allele. Region-specific differences were not observed, suggesting symptomatology may not be determined by repeat length instability.


Gyrus Cinguli/pathology , Huntingtin Protein/genetics , Huntington Disease/genetics , Huntington Disease/pathology , Motor Cortex/pathology , Trinucleotide Repeat Expansion/genetics , Analysis of Variance , Humans
12.
Biochim Biophys Acta ; 1862(9): 1650-62, 2016 09.
Article En | MEDLINE | ID: mdl-27267344

Huntington's disease (HD) is a genetically-mediated neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein (Htt) through lengthening of its polyglutamine tract, thus initiating a cascade that ultimately leads to premature death. However, neurodegeneration typically manifests in HD only in middle age, and mechanisms linking the causative mutation to brain disease are poorly understood. Brain metabolism is severely perturbed in HD, and some studies have indicated a potential role for mutant Htt as a driver of these metabolic aberrations. Here, our objective was to determine the effects of HD on brain metabolism by measuring levels of polar metabolites in regions known to undergo varying degrees of damage. We performed gas-chromatography/mass spectrometry-based metabolomic analyses in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine matched controls. In each patient, we measured metabolite content in representative tissue-samples from eleven brain regions that display varying degrees of damage in HD, thus identifying the presence and abundance of 63 different metabolites from several molecular classes, including carbohydrates, amino acids, nucleosides, and neurotransmitters. Robust alterations in regional brain-metabolite abundances were observed in HD patients: these included changes in levels of small molecules that play important roles as intermediates in the tricarboxylic-acid and urea cycles, and amino-acid metabolism. Our findings point to widespread disruption of brain metabolism and indicate a complex phenotype beyond the gradient of neuropathologic damage observed in HD brain.


Brain/metabolism , Huntington Disease/metabolism , Aged , Brain/pathology , Case-Control Studies , Female , Gas Chromatography-Mass Spectrometry , Humans , Huntington Disease/pathology , Male , Metabolic Networks and Pathways , Metabolome , Metabolomics , Middle Aged , Tissue Distribution
13.
Sci Rep ; 6: 20681, 2016 Feb 11.
Article En | MEDLINE | ID: mdl-26864449

Huntington's disease (HD) is a dominantly inherited, progressive neurodegenerative disorder caused by a CAG repeat expansion within exon 1 of HTT, encoding huntingtin. There are no therapies that can delay the progression of this devastating disease. One feature of HD that may play a critical role in its pathogenesis is metabolic disruption. Consequently, we undertook a comparative study of metabolites in our transgenic sheep model of HD (OVT73). This model does not display overt symptoms of HD but has circadian rhythm alterations and molecular changes characteristic of the early phase disease. Quantitative metabolite profiles were generated from the motor cortex, hippocampus, cerebellum and liver tissue of 5 year old transgenic sheep and matched controls by gas chromatography-mass spectrometry. Differentially abundant metabolites were evident in the cerebellum and liver. There was striking tissue-specificity, with predominantly amino acids affected in the transgenic cerebellum and fatty acids in the transgenic liver, which together may indicate a hyper-metabolic state. Furthermore, there were more strong pair-wise correlations of metabolite abundance in transgenic than in wild-type cerebellum and liver, suggesting altered metabolic constraints. Together these differences indicate a metabolic disruption in the sheep model of HD and could provide insight into the presymptomatic human disease.


Cerebellum/metabolism , Hippocampus/metabolism , Huntington Disease/metabolism , Liver/metabolism , Metabolome , Motor Cortex/metabolism , Amino Acids/metabolism , Animals , Animals, Genetically Modified , Asymptomatic Diseases , Cerebellum/physiopathology , Circadian Rhythm , Disease Models, Animal , Fatty Acids/metabolism , Female , Gas Chromatography-Mass Spectrometry , Hippocampus/physiopathology , Humans , Huntington Disease/physiopathology , Liver/physiopathology , Male , Motor Cortex/physiopathology , Organ Specificity , Sheep, Domestic
14.
Biochem Biophys Res Commun ; 468(1-2): 161-6, 2015.
Article En | MEDLINE | ID: mdl-26522227

Huntington's disease (HD) is a neurodegenerative disorder wherein the aetiological defect is a mutation in the Huntington's gene (HTT), which alters the structure of the huntingtin protein through the lengthening of a polyglutamine tract and initiates a cascade that ultimately leads to dementia and premature death. However, neurodegeneration typically manifests in HD only in middle age, and processes linking the causative mutation to brain disease are poorly understood. Here, our objective was to elucidate further the processes that cause neurodegeneration in HD, by measuring levels of metabolites in brain regions known to undergo varying degrees of damage. We applied gas-chromatography/mass spectrometry-based metabolomics in a case-control study of eleven brain regions in short post-mortem-delay human tissue from nine well-characterized HD patients and nine controls. Unexpectedly, a single major abnormality was evident in all eleven brain regions studied across the forebrain, midbrain and hindbrain, namely marked elevation of urea, a metabolite formed in the urea cycle by arginase-mediated cleavage of arginine. Urea cycle activity localizes primarily in the liver, where it functions to incorporate protein-derived amine-nitrogen into urea for recycling or urinary excretion. It also occurs in other cell-types, but systemic over-production of urea is not known in HD. These findings are consistent with impaired local urea regulation in brain, by up-regulation of synthesis and/or defective clearance. We hypothesize that defective brain urea metabolism could play a substantive role in the pathogenesis of neurodegeneration, perhaps via defects in osmoregulation or nitrogen metabolism. Brain urea metabolism is therefore a target for generating novel monitoring/imaging strategies and/or therapeutic interventions aimed at ameliorating the impact of HD in patients.


Brain/pathology , Huntington Disease/metabolism , Huntington Disease/pathology , Urea/metabolism , Aged , Brain/metabolism , Case-Control Studies , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Middle Aged , Urea/analysis
15.
MethodsX ; 2: 59-63, 2015.
Article En | MEDLINE | ID: mdl-26150972

Traditional RNA extraction methods rely on the use of hazardous chemicals such as phenol, chloroform, guanidinium thiocyanate to disrupt cells and inactivate RNAse simultaneously. RNA isolation from Caenorhabditis elegans presents another challenge due to its tough cuticle, therefore several repeated freeze-thaw cycles may be needed to disrupt the cuticle before the cell contents are released. In addition, a large number of animals are required for successful RNA isolation. To overcome these issues, we have developed a simple and efficient method using proteinase K and a brief heat treatment to release RNA of quality suitable for quantitative PCR analysis.The benefits of the method are: •Faster and safer compared to conventional RNA extraction methods•Released RNA can be used directly for cDNA synthesis without purification•As little as a single worm is sufficient.

16.
J Huntingtons Dis ; 2(3): 279-95, 2013.
Article En | MEDLINE | ID: mdl-25062676

BACKGROUND: Huntington's disease is a neurodegenerative disorder, typically with clinical manifestations in adult years, caused by an expanded polyglutamine-coding repeat in HTT. There are no treatments that delay or prevent the onset or progression of this devastating disease. OBJECTIVE AND METHODS: In order to study its pre-symptomatic molecular progression and provide a large mammalian model for determining natural history of the disease and for therapeutic testing, we generated and previously reported on lines of transgenic sheep carrying a full length human HTT cDNA transgene, with expression driven by a minimal HTT promoter. We report here further characterization of our preferred line, OVT73. RESULTS: This line reliably expresses the expanded human huntingtin protein at modest, but readily detectable levels throughout the brain, including the striatum and cortex. Transmission of the 73 unit glutamine coding repeat was relatively stable over three generations. At the first time-point of a longitudinal study, animals sacrificed at 6 months (7 transgenic, 7 control) showed reduced striatum GABAA α1 receptor, and globus pallidus leu-enkephalin immunoreactivity. Two of three 18 month old animals sacrificed revealed cortical neuropil aggregates. Furthermore, neuronal intranuclear inclusions were identified in the piriform cortex of a single 36 month old animal in addition to cortical neuropil aggregates. CONCLUSIONS: Taken together, these data indicate that the OVT73 transgenic sheep line will progressively reveal early HD pathology and allow therapeutic testing over a period of time relevant to human patients.


Animals, Genetically Modified , Cerebral Cortex/pathology , Disease Models, Animal , Huntington Disease/pathology , Sheep, Domestic/genetics , Animals , Humans , Huntingtin Protein , Intranuclear Inclusion Bodies/pathology , Nerve Tissue Proteins/genetics
17.
Nat Genet ; 44(4): 390-7, S1, 2012 Mar 04.
Article En | MEDLINE | ID: mdl-22388000

We defined the genetic landscape of balanced chromosomal rearrangements at nucleotide resolution by sequencing 141 breakpoints from cytogenetically interpreted translocations and inversions. We confirm that the recently described phenomenon of 'chromothripsis' (massive chromosomal shattering and reorganization) is not unique to cancer cells but also occurs in the germline, where it can resolve to a relatively balanced state with frequent inversions. We detected a high incidence of complex rearrangements (19.2%) and substantially less reliance on microhomology (31%) than previously observed in benign copy-number variants (CNVs). We compared these results to experimentally generated DNA breakage-repair by sequencing seven transgenic animals, revealing extensive rearrangement of the transgene and host genome with similar complexity to human germline alterations. Inversion was the most common rearrangement, suggesting that a combined mechanism involving template switching and non-homologous repair mediates the formation of balanced complex rearrangements that are viable, stably replicated and transmitted unaltered to subsequent generations.


Chromosome Breakage , DNA End-Joining Repair/genetics , Gene Rearrangement , Germ-Line Mutation , Animals , Animals, Genetically Modified , Chromosome Inversion , Humans , Molecular Sequence Data , Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Sequence Analysis, DNA , Translocation, Genetic
18.
Hum Mol Genet ; 19(10): 1873-82, 2010 May 15.
Article En | MEDLINE | ID: mdl-20154343

Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disorder caused by an expansion of a CAG trinucleotide repeat in the huntingtin (HTT) gene [Huntington's Disease Collaborative Research Group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell, 72, 971-983]. Despite identification of the gene in 1993, the underlying life-long disease process and effective treatments to prevent or delay it remain elusive. In an effort to fast-track treatment strategies for HD into clinical trials, we have developed a new large-animal HD transgenic ovine model. Sheep, Ovis aries L., were selected because the developmental pattern of the ovine basal ganglia and cortex (the regions primarily affected in HD) is similar to the analogous regions of the human brain. Microinjection of a full-length human HTT cDNA containing 73 polyglutamine repeats under the control of the human promotor resulted in six transgenic founders varying in copy number of the transgene. Analysis of offspring (at 1 and 7 months of age) from one of the founders showed robust expression of the full-length human HTT protein in both CNS and non-CNS tissue. Further, preliminary immunohistochemical analysis demonstrated the organization of the caudate nucleus and putamen and revealed decreased expression of medium size spiny neuron marker DARPP-32 at 7 months of age. It is anticipated that this novel transgenic animal will represent a practical model for drug/clinical trials and surgical interventions especially aimed at delaying or preventing HD initiation. New sequence accession number for ovine HTT mRNA: FJ457100.


Animals, Genetically Modified/genetics , Disease Models, Animal , Huntington Disease/genetics , Sheep/genetics , Animals , Basal Ganglia/metabolism , Basal Ganglia/pathology , Chromosomes, Mammalian/genetics , Dopamine and cAMP-Regulated Phosphoprotein 32/metabolism , Female , Founder Effect , Humans , Huntingtin Protein , Male , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Pedigree , Receptor, Cannabinoid, CB1/metabolism , Transgenes/genetics
19.
Brain Res ; 1268: 190-199, 2009 May 01.
Article En | MEDLINE | ID: mdl-19285969

Previously we have reported the accumulation of an N-terminal fragment of the TATA-box binding protein (TBP) in Alzheimer's disease brain tissue and here we report the identification of a naturally occurring TBP splice variant as a likely mechanism for its production. The splice variant described here encodes the polyglutamine-containing N-terminal domain of this key transcription factor. We demonstrate the expression of the splice variant mRNA in a variety of human tissues and that the resulting protein forms inclusions in cell culture transfection studies. The unusual properties of the variant protein suggest that it may be functionally relevant in late onset neurodegenerative diseases.


Alzheimer Disease/metabolism , Brain/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Alzheimer Disease/genetics , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cell Line , Cell Line, Tumor , Cell Nucleus/metabolism , Conserved Sequence , Humans , Mice , Molecular Sequence Data , Neurons/metabolism , Neurons/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/metabolism , TATA-Box Binding Protein/chemistry
20.
Brain Res Mol Brain Res ; 125(1-2): 120-8, 2004 Jun 18.
Article En | MEDLINE | ID: mdl-15193429

Alzheimer's disease (AD) is characterised by extra cellular beta-amyloid (betaA) deposition, Tau-containing neurofibrillary tangles (NFTs) and progressive cortical atrophy. Abnormal protein accumulation is also a common feature of other late onset neurodegenerative diseases, including the heritable polyglutamine (polyQ) disorders such as Huntington disease (HD) and the spinocerebellar ataxias (SCAs). One of this family of disorders, SCA17, is caused by an expansion of a polymorphic polyQ repeat in TATA binding protein (TBP), an essential transcription factor. Surprisingly, the wild type TBP repeat length ranges from 25 to 42, and in Caucasian populations the most common allele is 38, a size large enough to cause HD if within the huntingtin protein. Wild type length TBP accumulates in HD and in at least some of the SCAs, and consequently we hypothesised that it may contribute to AD. Here we provide evidence that TBP accumulates in AD brain, localising to neurofibrillary tangle structures. A proportion of TBP present in AD brain is insoluble; a signature of the polyQ diseases. TBP is present differentially between patients and its amount and distribution is not directly proportional to that of Tau or beta-amyloid positive structures. We present this as evidence for the hypothesis that the accumulation or misfolding of this polyQ containing protein may be a contributing factor in Alzheimer's disease.


Alzheimer Disease/genetics , Neurofibrillary Tangles/genetics , Peptides/genetics , TATA-Box Binding Protein/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Apolipoproteins E/genetics , Brain/cytology , Brain/metabolism , Female , Genotype , Humans , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Male , Middle Aged , Neurofibrillary Tangles/pathology , Neurons/cytology , Neurons/metabolism , Peptides/metabolism , Spinocerebellar Ataxias/genetics , Spinocerebellar Ataxias/metabolism , Spinocerebellar Ataxias/pathology , TATA-Box Binding Protein/chemistry , TATA-Box Binding Protein/genetics , Trinucleotide Repeat Expansion , tau Proteins/metabolism
...